262 research outputs found

    NUV/Blue spectral observations of sprites in the 320-460 nm region: N2{\mathrm N_2} (2PG) Emissions

    Full text link
    A near-ultraviolet (NUV) spectrograph (320-460 nm) was flown on the EXL98 aircraft sprite observation campaign during July 1998. In this wavelength range video rate (60 fields/sec) spectrographic observations found the NUV/blue emissions to be predominantly N2 (2PG). The negligible level of N2+ (1NG) present in the spectrum is confirmed by observations of a co-aligned, narrowly filtered 427.8 nm imager and is in agreement with previous ground-based filtered photometer observations. The synthetic spectral fit to the observations indicates a characteristic energy of ~1.8 eV, in agreement with our other NUV observations.Comment: 7 pages, 2 figures, 1 table, JGR Space Physics "Effects of Thunderstorms and Lightning in the Upper Atmosphere" Special Sectio

    Convection and electrodynamic signatures in the vicinity of a Sun-aligned arc: Results from the Polar Acceleration Regions and Convection Study (Polar ARCS)

    Get PDF
    An experimental campaign designed to study high-latitude auroral arcs was conducted in Sondre Stromfjord, Greenland, on February 26, 1987. The Polar Acceleration Regions and Convection Study (Polar ARCS) consisted of a coordinated set of ground-based, airborne, and sounding rocket measurements of a weak, sun-aligned arc system within the duskside polar cap. A rocket-borne barium release experiment, two DMSP satellite overflights, all-sky photography, and incoherent scatter radar measurements provided information on the large-scale plasma convection over the polar cap region while a second rocket instrumented with a DC magnetometer, Langmuir and electric field probes, and an electron spectrometer provided measurements of small-scale electrodynamics. The large-scale data indicate that small, sun-aligned precipitation events formed within a region of antisunward convection between the duskside auroral oval and a large sun-aligned arc further poleward. This convection signature, used to assess the relationship of the sun-aligned arc to the large-scale magnetospheric configuration, is found to be consistent with either a model in which the arc formed on open field lines on the dusk side of a bifurcated polar cap or on closed field lines threading an expanded low-latitude boundary layer, but not a model in which the polar cap arc field lines map to an expanded plasma sheet. The antisunward convection signature may also be explained by a model in which the polar cap arc formed on long field lines recently reconnected through a highly skewed plasma sheet. The small-scale measurements indicate the rocket passed through three narrow (less than 20 km) regions of low-energy (less than 100 eV) electron precipitation in which the electric and magnetic field perturbations were well correlated. These precipitation events are shown to be associated with regions of downward Poynting flux and small-scale upward and downward field-aligned currents of 1-2 micro-A/sq m. The paired field-aligned currents are associated with velocity shears (higher and lower speed streams) embedded in the region of antisunward flow

    Integral cross sections for electron scattering by ground state Ba atoms

    Get PDF
    We have used the convergent close-coupling method and a unitarized first-order many-body theory to calculate integral cross sections for elastic scattering and momentum transfer, for excitation of the 5d^2 ^1S, 6s6p^1P_1, 6s7p^1P_1, 6s8p^1P_1, 6s5d^1D_2, 5d^2^1D_2, 6s6d^1D_2, 6p5d^1F_3, 6s4f^1F_3, 6p5d^1D_2, 6s6p^3P_{0,1,2}, 6s5d^3D_{1,2,3}, and 6p5d^3D_2 states, for ionization and for total scattering by electron impact on the ground state of barium at incident electron energies from 1 to 1000 eV. These results and all available experimental data have been combined to produce a recommended set of integral cross sections.Comment: 47 pages, 8 tables, 25 figure

    Investigation of initiation of gigantic jets connecting thunderclouds to the ionosphere

    Get PDF
    The initiation of giant electrical discharges called as "gigantic jets" connecting thunderclouds to the ionosphere is investigated by numerical simulation method in this paper. Using similarity relations, the triggering conditions of streamer formation in laboratory situations are extended to form a criterion of initiation of gigantic jets. The energy source causing a gigantic jet is considered due to the quasi-electrostatic field generated by thunderclouds. The electron dynamics from ionization threshold to streamer initiation are simulated by the Monte Carlo technique. It is found that gigantic jets are initiated at a height of ~18-24 km. This is in agreement with the observations. The method presented in this paper could be also applied to the analysis of the initiation of other discharges such as blue jets and red sprites.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France

    MiL Testing of Highly Configurable Continuous Controllers: Scalable Search Using Surrogate Models

    Get PDF
    Continuous controllers have been widely used in automotive do- main to monitor and control physical components. These con- trollers are subject to three rounds of testing: Model-in-the-Loop (MiL), Software-in-the-Loop and Hardware-in-the-Loop. In our earlier work, we used meta-heuristic search to automate MiL test- ing of fixed configurations of continuous controllers. In this paper, we extend our work to support MiL testing of all feasible configura- tions of continuous controllers. Specifically, we use a combination of dimensionality reduction and surrogate modeling techniques to scale our earlier MiL testing approach to large, multi-dimensional input spaces formed by configuration parameters. We evaluated our approach by applying it to a complex, industrial continuous controller. Our experiment shows that our approach identifies test cases indicating requirements violations. Further, we demonstrate that dimensionally reduction helps generate surrogate models with higher prediction accuracy. Finally, we show that combining our search algorithm with surrogate modelling improves its efficiency for two out of three requirements

    Simultaneous observation of mesospheric gravity waves and sprites generated by a Midwestern thunderstorm

    Get PDF
    Abstract The present report investigates using simultaneous observations of coincident gravity waves and sprites to establish an upper limit on sprite-associated thermal energy deposition in the mesosphere. The University of Alaska operated a variety of optical imagers and photometers at two ground sites in support of the NASA Sprites99 balloon campaign. One site was atop a US Forest Service lookout tower on Bear Mt. in the Black Hills, in western South Dakota. On the night of 18 August 1999 we obtained from this site simultaneous images of sprites and OH airglow modulated by gravity waves emanating from a very active sprite producing thunderstorm over Nebraska, to the Southeast of Bear Mt. Using 25 s exposures with a bare CCD camera equipped with a red ÿlter, we were able to coincidentally record both short duration (¡10 ms) but bright (¿3 MR) N2 1PG red emissions from sprites and much weaker (∼1 kR), but persistent, OH Meinel nightglow emissions. A time lapse movie created from images revealed short period, complete 360 • concentric wave structures emanating radially outward from a central excitation region directly above the storm. During the initial stages of the storm outwardly expanding waves possessed a period of ≈10 min and wavelength ≈50 km. Over a 1 h interval the waves gradually changed to longer period ≈11 min and shorter wavelength ≈40 km. Over the full 2 h observation time, about two dozen bright sprites generated by the underlying thunderstorm were recorded near the center of the outwardly radiating gravity wave pattern. No distinctive OH brightness signatures uniquely associated with the sprites were detected at the level of 2% of the ambient background brightness, establishing an associated upper limit of approximately T . 0:5 K for a neutral temperature perturbation over the volume of the sprites. The corresponding total thermal energy deposited by the sprite is bounded by these measurements to be less than ∼1 GJ. This value is well above the total energy deposited into the medium by the sprite, estimated by several independent methods to be on the order of ∼1-10 MJ

    Belle II Technical Design Report

    Full text link
    The Belle detector at the KEKB electron-positron collider has collected almost 1 billion Y(4S) events in its decade of operation. Super-KEKB, an upgrade of KEKB is under construction, to increase the luminosity by two orders of magnitude during a three-year shutdown, with an ultimate goal of 8E35 /cm^2 /s luminosity. To exploit the increased luminosity, an upgrade of the Belle detector has been proposed. A new international collaboration Belle-II, is being formed. The Technical Design Report presents physics motivation, basic methods of the accelerator upgrade, as well as key improvements of the detector.Comment: Edited by: Z. Dole\v{z}al and S. Un

    Matrix-assisted laser desorption ionization hydrogen/deuterium exchange studies to probe peptide conformational changes

    Get PDF
    AbstractHydrogen/deuterium (H/D) exchange chemistry monitored by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry is used to study solution phase conformational changes of bradykinin, α-melanocyte stimulating hormone, and melittin as water is added to methanol-d4, acetonitrile, and isopropanol-d8 solutions. The results are interpreted in terms of a preference for the peptides to acquire more compact conformations in organic solvents as compared to the random conformations. Our interpretation is supported by circular dichroism spectra of the peptides in the same solvent systems and by previously published structural data for the peptides. These results demonstrate the utility of MALDI-TOF as a method to monitor the H/D exchange chemistry of peptides and investigations of solution-phase conformations of biomolecules

    Splitting and blaming: The psychic life of neoliberal executive women

    Get PDF
    The aim of the article is to explore the psychic life of executive women under neoliberalism using psychosocial approaches. The article shows how, despite enduring unfair treatment and access to opportunities, many executive women remain emotionally invested in upholding the neoliberal ideal that if one perseveres, one shall be successful, regardless of gender. Drawing on psychosocial approaches, we explore how the accounts given by some executive women of repudiation, as denying gender inequality, and individualization, as subjects completely agentic, are underpinned by the unconscious, intertwined processes of splitting and blaming. Women sometimes split off undesirable aspects of the workplace, which repudiates gender inequality, or blame other women, which individualizes failure and responsibility for change. We explain that splitting and blaming enable some executive women to manage the anxiety evoked from threats to the neoliberal ideal of the workplace. This article thereby makes a contribution to existing postfeminist scholarship by integrating psychosocial approaches to the study of the psychic life of neoliberal executive women, by exploring why they appear unable to engage directly with and redress instances of gender discrimination in the workplace
    • …
    corecore